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In this paper, the method of Hall current spatial structure estimation based on the measurements of steady-state

magnetic fields induced by this current outside the acceleration channel is proposed. The approach to Hall current

structure determination is based on the inverse magnetostatic problem solution using two-dimensional constrained

regularization. The optimal number and positions of magnetic sensors are determined, and the solutions using

simulated measurements with and without simulated noise are obtained.

Nomenclature

A = kernel matrix
a, b, c = numerical parameters
B = magnetic flux density
Br = magnetic flux density radial component
B� = magnetic flux density radial component with added

simulated noise
D = relative error in the regularized solutions
d = error level in simulated measurements
E = electric field
Ez = electric field axial component
e = unit positive electric charge
IH = normalization coefficient
Itot = total Hall current value
jH = Hall current density
jiq = ion current density
jexact = Hall current density exact distribution
jinverse = Hall current density distribution obtained from the

inverse problem solution
L = regularization matrix
M = mass of ion
m = mass of electron
n = electron (ion) number density
r = radial coordinate
S = acceleration channel cross section
T = thrust
V = ion velocity
z = axial coordinate
" = ion energy
� = regularization parameter
� = normally distributed random number
�0 = electric conductivity
�e = time between collisions of the electron with heavy

particles or walls
� = electric potential
!e = electron cyclotron frequency
!e�e = Hall parameter

I. Introduction

M ODERN electric propulsion systems and in particular, Hall
thrusters, are often equipped with diagnostic packages. The

main purpose of these packages is usually to investigate the thruster
performance as well as the environment created during the electric
propulsion system’s operation and its influence on the spacecraft.
The diagnostics of the internal thruster processes are also of great
interest. The results of onboard measurements show that the
operation of a Hall thruster in space may differ from its operation
during ground tests [1,2]. To understand the reasons for these
differences, a study of processes in the thruster acceleration channel
should be done during flight. Another important reason for the
creation of an onboard diagnostics system is that it may provide clues
to understanding the possible thruster malfunctions. The obvious
requirements to such systems are compactness, a light weight, and
the capability of noncontact real-time measurements without
affecting thruster operation. In previous works [3,4] different types
of onboard diagnostics systems capable of providing information on
the internal processes in the Hall thruster were proposed. This paper
is devoted to the method of noncontact determination of the Hall
current structure using magnetic field sensors.

The structure of theHall current was previously investigated using
probe measurements [5–7] as well as a noninvasive method, which
requires the thruster to be switched off during each measurement’s
run [8–11]. The approach described in the present work allows
carrying out steady-state measurements, which is especially
important for onboard systems. The method is based on noncontact
measurements of the steady-state magnetic field induced by the Hall
current outside the acceleration channel. The approach to the Hall
current structure determination is based on the inverse magnetostatic
problem solution using a two-dimensional constrained regulariza-
tion. Optimal number and positions of magnetic sensors are
determined, and the solutions using simulated measurements with
and without simulated noise are obtained.

The study of the Hall current distribution is of interest for several
reasons. The magnetic field in the Hall thruster is the sum of both the
applied and the self-magnetic fields. The self-magnetic field is
mainly due to the Hall current. Therefore, to determine the magnetic
field configuration, it is necessary to know the Hall current’s
distribution. This is especially important for high-power Hall
thrusters because the Hall current and consequently the self-
magnetic field grows with the thruster’s power level increase.
Furthermore, knowledge of the electricfield distribution and ionflow
parameters inside the acceleration channel is of prime importance for
the Hall thruster’s design. These distributions could be obtained
using diagnostic probes in the acceleration channel. However, for
thrusters, having sizes and current densities typical of flight models,
the damage caused to the diagnostic probes by the flow of the fast
ions, as well as the probe’s influence on the thruster discharge, make
their use problematic. These distributions may be obtained under
laboratory conditions, without introducing diagnostic sensors into
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the acceleration channel, by using a set of magnetic sensors as
presented in this paper in combination with a retarding potential
analyzer and collector of ions placed beyond the thruster.

II. Direct Problem

A. Method of Solution

The direct problem is the calculation of the magnetic field (self-
field) generated by theHall current. Themagneticfield distribution in
the Hall thruster is not exactly axially symmetric because of the outer
magnetic coils. In most cases, the deviation of the magnetic field
distribution from axially symmetric may be neglected, but in our
case, it should be taken into account to measure the small field
generated by the Hall current. Furthermore, the outer magnetic
screen is not axisymmetric because of the required modifications to
allow placement of magnetic sensors in the vicinity of the Hall
thruster. Consequently, it is impossible to use a simplified two-
dimensional axisymmetric model, and fully 3-D calculations are
necessary. The calculationswere performed using theANSYSfinite-
element method (FEM) solver.

The magnetic circuit of the Hall thruster includes the following
parts: inner and outer magnetic coils with magnetic cores, inner and
outermagnetic pole pieces, inner and outermagnetic screens, and the
backplane. The coils generate the magnetic field in the magnetic
cores. This field is directed through the pole pieces into the
acceleration channel region adjacent to the thruster exit plane. The
magnetic flux lines going from the inner to the outer pole pieces
create a so-called magnetic lens in the acceleration channel. The
backplane provides the path to close the magnetic field lines in the
back part of the thruster. The magnetic screens reduce the magnetic
field in the inner part of the acceleration channel. It is necessary to
reduce the electric field in the inner part of the channel and to increase
the electric field in the near-exit region where the ion acceleration
occurs.

The model of the magnetic system typical of present-day low-
power Hall thrusters was chosen for calculations (Fig. 1). The length
of the magnetic system is 48 mm, the diameter (outer) of the inner
magnetic screen is 31 mm, and the diameter (inner) of the outer
magnetic screen is 77mm. The cylindrical outermagnetic screenwas
modified near the thruster exit plane as shown in Fig. 1: four
rectangular boxes were cut into the screen equally spaced in the
azimuthal direction. The dimensions of the box are 17 mm in the
axial direction, 12 mm in the azimuthal direction, and 8.5 mm in the
radial direction. The modification allows placing the magnetic
sensors (for example, commercial Honeywell HTMC1021D) in the
vicinity of the Hall current.

The mass of the Hall thruster before modification is about 2 kg.
The overall mass increase due to the modification of the magnetic
screen and installation of both the measurement system and
telemetry is expected to be below 0.3 kg.

The model of the Hall thruster used in the calculations has
moderate size and power. Application of the proposed technique for
larger, more powerful thrusters would be simpler. The level of the
primary magnetic field in larger thrusters is approximately the same
as in small ones, whereas the Hall current and its self-magnetic field
increase with the increase in thruster size and power. Therefore, the
ratio of the Hall current’s self-magnetic field to the primarymagnetic
field increases. It is desirable to use the proposed measurements
technique because it will increase the measurement accuracy.
Additionally, in larger thrusters there is more space available for
sensor placement.

Because a broad range of oscillations occurs in the Hall thruster
plasma,filtering and averaging of themeasuredmagneticfield values
are necessary to calculate average Hall current distribution.

The Hall current distribution was approximated by cylindrical
current elements. We determined that a size of1:4�1.5 mm for each
element gives sufficiently accurate results at reasonable computa-
tional time; the total number of elements was 130. It should be noted
that although the problem is three-dimensional, the current
distribution is axisymmetric and therefore is treated as two
dimensional.

The solution of the inverse problem is an iterative process that
includes one or more calculations of the direct problem solution at
every iteration. It is possible to use an FEM solver in these
calculations, but the computational time in this case will be
unreasonably high. Because the dependence between the current and
the magnetic flux density may be considered as linear in the range of
magnetic field values generated by the Hall current, the distribution
of themagneticfieldmay be obtained as the linear combination of the
magnetic fields of individual elements. Calculating the magnetic
field distribution generated by each of theN current elements placing
M magnetic field sensors, each measuring one magnetic field
component, we obtain the linear matrix equation shown in Fig. 2.

The elements of this matrix are the values of the magnetic field at
different sensor locations generated by the current element carrying
unit current. To calculate the magnetic field generated by a specific
current distribution, this matrix is multiplied by the column-wise
stacked vector of current distribution.

The obtained matrix may be easily checked experimentally using
the method described in [8–11]. A metal coil carrying current should
be placed into the acceleration channel, and the magnetic field
generated by the coil should be measured for different coil locations.

B. Results of Direct Problem Solution

The radial magnetic field profile for the original and modified
magnetic systems is presented in Fig. 3. The profiles closely match;
the maximum difference of the centerline values is about 5%. The
maximum variation of the magnetic field on the outer wall of the
acceleration channel is about 10%.

According to the different experimental data available up to date
[5–11], the Hall current is 3.5–15 times higher then the discharge
current. For the Hall thruster model with dimensions used in our
analysis, the discharge current value is about 2A; therefore, the Hall
current value of 10Awas chosen as a conservative estimation, which
corresponds to typical values of the effective Hall parameter in the
range of 200–300 [12].

For the purpose of simulating the magnetic field measurements,
the following decomposition of the Hall current density distribution
was used:

jH � IHZ�z�R�r�

Fig. 1 Full and quarter sector model geometry of modified magnetic

system. 1) Backplane; 2) outer magnetic coil; 3) outer magnetic screen;
4) modified part of the magnetic screen; 5) outer magnetic pole piece;

6) inner magnetic screen; 7) inner magnetic coil; 8) inner magnetic pole

piece.

Fig. 2 Linear system used for magnetic field calculation.
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where

Z�z� � 1�
sinh�a�z�c��
sinh�aq�

�
2

	 1

(1)

Here R�r� is a Gaussian distribution and IH is the normalization
coefficient. Function Z�z� includes three parameters: a, c, and q.
Parameter a determines the slope steepness, c determines themedian
of the distribution, and q determines the width of the distribution.
This function was chosen based on the following considerations:
first, the experimental data [5,6,11] show that the Hall current
distribution has a single maximum, and second, the results of
calculations of plasma parameters distributions in [4] show that the
axial distribution may be close to bell shaped but broader. This
distribution allows obtaining both Gauss-like bell-shaped
distributions as well as wider distributions.

In the calculations, aHall current density distributionwith a profile
close to the experimentally measured [5,6] and a value of 10A was
used. The comparison of the primarymagnetic field distribution with
the distribution of the self-field generated by the Hall current in the
region close to the backplane (behind the anode) where the magnetic
sensors could be placed is presented in Fig. 4. To plot the
distributions on the same scale, the Hall current field was multiplied
by a factor of 100. The magnitude of the Hall current self-field is
significant enough (several percent of the primary field) to be
measured by the existing magnetic sensors.

The calculations showed that the magnetic measurements in that
area do not provide sufficient data for the determination of the Hall
current distribution. Consequently, the magnetic screen should be
modified. Fig. 5 shows the radial and axial magnetic field
components’ distribution in themodified part of themagnetic system
where the magnetic sensors could be placed.

As can be seen, the ratio of the self-magnetic field to the primary
field is much higher and even more so in the region where the axial
component of the primary magnetic field is close to zero. This
confirms the possibility of measuring the self-magnetic field in this
region. The data provided by the sensors in this region, together with
the data from the sensors located near the backplane, are sufficient for
the Hall current determination. The schematic of magnetic sensor
placement inside the Hall thruster is presented in Fig. 6.

III. Inverse Problem

The inverse problem is the determination of the current
distribution from the measured magnetic field values. Because
steady-state (time-averaged) current and magnetic field distributions
are considered, the problem is a magnetostatic problem.

Solution of the inversemagnetostatic problems has been discussed
in the context of diagnostics of superconducting magnets [13],
biomagnetism [14], identification of the plasma magnetic contour in
the thermonuclear fusion area [15], and determination of the
ferromagnetic thin shell magnetization [16]. Different regularization

methods were used in these works: truncated singular value
decomposition [15], iterative regularization [13], and the
Levenberg–Marquard algorithm with regularization term [17]. In
[16], instead of regularization, the authors use the injection of the
physical information to constrain the solution. In this work, a
different method is presented based on Tikhonov regularization [18].

A. Inverse Problem Formulation

As mentioned previously, the axisymmetric distribution of
azimuthal current density is parameterized using piece-wise constant
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magnetic field in the region where the sensors may be placed. Axial
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Fig. 6 Magnetic sensors placement inside Hall thruster. 1) Anode;

2)magnetic sensors behind the anode (arrows display the direction of the

magnetic field component measured by the sensors); 3) modified part of
outer magnetic screen; 4) magnetic sensors in the modified part of

magnetic screen (arrows display the direction of the magnetic field

component measured by the sensors); 5) current-carrying loop used for

calibration (“calibration loop”).
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elements. The discretization of the problem leads to the following
linear matrix equation for determination of the magnetic field
distribution:

AjH � B (2)

The inverse problem can be formulated as a linear least-squares
problem:

min kAjH � Bk2 (3)

It is necessary to determine the current distribution (vector jH),
which minimizes the quadratic residue between the calculated
magnetic field and the measured field. This is the linearized
approximation of the inverse magnetostatic problem.

The inverse magnetostatic problems are a particular case of the
Fredholm integral equations of the first kind. They typically do not
have a continuous inverse and are therefore ill posed [18]. Problems
of this type are essentially underdetermined. The standard methods
of linear algebra, such as LU (decomposition of a squarematrix into a
product of a lower triangular matrix and an upper triangular matrix),
Cholesky, or QR factorization decomposition of a matrix into an
orthogonal and a triangular matrix, cannot be used in a
straightforward manner for their solution. It is necessary to
incorporate some a priori information about the solution to stabilize
the problem. This is the purpose of regularization. The key idea of the
regularization is to approximate the discontinuous operator by a
continuous one.

For our specific numerical example, the condition numbers of
kernel matrices A, corresponding to radial and axial magnetic field
components in the entire longitudinal cross section of the
acceleration channel, are 8:9759 � 1017 and 3:4274 � 1018.
Obviously, these matrices are extremely ill conditioned. The
condition number of matrix A is the measure of the sensitivity of the
Eq. (2) solution for jH to perturbations of the right side B. If the
condition number is near 1, the problem and the matrix A are said to
be well conditioned. If the condition number is much greater than 1
then the problem is ill conditioned. In this case small perturbations of
B cause large perturbations in the solution. Therefore, even if we
know the magnetic field distribution along the entire acceleration
channel the straightforward solution of the inverse problem is
impossible. The condition number of the matrix A corresponding to
the chosen sensors locations is 616, and so the problem under
consideration is also ill conditioned. Because the number of
equations (equal to the number of sensors) is less than the number of
unknown values (equal to the number of current elements), the
problem is also rank deficient.

B. Regularization

There are different regularization techniques to overcome the
difficulties of solving discrete ill-posed problems [18]. The most
common form of regularization is Tikhonov regularization. In
Tikhonov’s method, the ill conditioning is circumvented by
introducing a stabilizing term, which gives a new problem with a
well-conditioned coefficient matrix. The truncated singular value
decomposition (TSVD) method is based on replacing the small
nonzero singular values from the decomposition of the operator by
exact zeros, giving the approximate well-conditioned operator. In
iterative regularization, the minimization problem [Eq. (3)] is solved
using a conjugate gradient method generating a family of continuous
operators with the iteration number as a regularization parameter.
Maximum entropy regularization, which is used in image restoration
and related applications, uses the solution entropy as a side
constraint.

Different regularization methods were tested; the best results were
obtained using the method based on Tikhonov regularization. The
idea of the Tikhonov’s method is to use a priori assumptions about
the size and the smoothness of the desired solution. The general form
of the Tikhonov’s method for Eq. (3) takes the form

minbkAjH � Bk2 	 �2kLjHk2c (4)

where� is the regularization parameter that controls theweight of the
regularization term kLjHk2 relative to the residual term kAjH � Bk2,
and L is the regularization matrix, also called discrete smoothing
form, which is a matrix that defines the norm of the solution through
which the size is measured. Typically, L is the identity matrix, a
diagonal weighting matrix, or a discrete approximation of a
derivative operator. The choice of the regularization term depends on
the a priori properties of the solution; that is, the additional
information that is enforced on the regularization solution.

Different forms of the matrix Lwere tested, including the identity
matrix corresponding tominimum-norm solution and different forms
of two-dimensional derivative operators corresponding to the
continuous and smooth solutions.

From physical considerations, the current distribution should be
smooth, and the following regularization term was chosen:

kLrrjHk2 	 2kLrzjHk2 	 kLzzjHk2 (5)

where

Lrr �
@2

@r2
; Lrz �

@2

@r@z

and

Lrr �
@2

@z2

Additional constraints were added to the solution based on the
physical features of the Hall current. The constraints used were as
follows:

1) Nonnegativity constraint: The physical meaning of this
constraint is that the azimuthal current in the entire acceleration
channel flows in the same azimuthal direction. The solution obtained
without this constraint includes some elements with negative
currents. An example of such solution is presented.

2) Zero boundary condition: The Hall current density on the
boundaries of the current distribution region is assumed to be zero.
The boundaries are acceleration channel walls in radial direction,
anode plane, and some plane normal to the thruster axis downstream
of the thruster exit plane in the axial direction.

The second constraint is added to suppress the artifact secondary
peaks that appear on the boundary of the solution region when
measurement data are inexact.

The density of the Hall current is equal to

jH ��en
E � B

B2
��enEzBr � ErBz

B2
(6a)

The main contribution to the thrust is produced in the exit and
central regions of the acceleration channel. In these regions, the axial
magnetic field is low in comparison with the radial magnetic field.
The radial electric field, in turn, is low in comparison with the axial
electricfield. As a consequence, the product of the radial electricfield
by the axial magnetic field is much smaller than the product of the
axial electric field by the radial magnetic field. Therefore, at least as a
first approximation, it can be neglected compared with the
contribution of the axial magnetic field to the Hall current:

jH ��ne
Ez
Br

(6b)

The Hall current on the walls is equal to zero because the walls are
made of insulator materials, and the number density of the free
electrons on them is zero.

We will now show that the Hall current density on the anode is
negligible and can be assumed to be zero.

When taking into account collisional processes in a conducting
medium, the Hall current density is equal to

jH ��
�0!e�e
1	 !2

e�
2
e

Ez ��
ne2

m
�e

!e�e
1	 !2

e�
2
e

Ez (6c)
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where m is the mass of the electron, �e is the time between electron
collisions with heavy particles or walls,

�0 �
ne2

m
�e

is the electrical conductivity,

!e �
ejBrj
m

is the electron cyclotron frequency, and !e�e is the Hall parameter.
Because in the Hall thruster plasma, !e�e 
 1, we obtain Eq. (6b).

In the anodematerial, the density of heavy particles is by a factor of
�109 higher than in the plasma. Consequently, �e is by many orders
less than in the plasma, and !e�e � 1. Therefore, according to
Eq. (6c), in the anode

jjanHj � jianzj � �0anEanz (6d)

where the index “an” means that the quantities correspond to the
anode. The density of the longitudinal current in the anode, janz, is of
the same order of magnitude as the density of the discharge current in
the plasma jd. Therefore, from Eq. (6d) and taking into account the
fact that in the Hall thruster plasma the density of the Hall current is
greater than jd, it follows that the density of the Hall current in the
anode is much smaller than in the acceleration channel plasma and
can be considered as a negligibly small quantity, as previously stated.

Outside the acceleration channel, the electric field drops to zero,
and the Hall current also drops to zero at a certain distance from the
thruster exit plane.

C. Optimization Method

A constrained minimization algorithm implemented was used to
solve Eq. (4). It is a sequential quadratic programming algorithm,
which consists of three main implementation stages: 1) updating the
Lagrangian function Hessian, 2) quadratic programming problem
solution, and 3) line search.

The solution procedure is as follows: the simulated measurements
are obtained using the linear system, and then the inverse problem is
solved using the constrained optimization method. The optimization
procedure starts with values of current in all elements set to zero.
Measurement errors were simulated by adding a Gaussian random
noise to the exact data.

The regularized problem includes three derivatives and additional
constraints, which makes it different from the traditional Tikhonov
regularization. For that reason, it proved impossible to use the usual
methods such as L-curve for the regularization parameter choice. The
parameter was chosen manually by the method described here.

IV. Numerical Results

For the numerical solution of the inverse problem, a MATLAB
program has been developed. Using the methods described
previously, the inverse problem is solved using either exact or
perturbed values of the magnetic field.

Let us consider the current distribution presented in Fig. 7. The
peak of the distribution is situated severalmillimeters upstreamof the
exit plane close to the outer channel wall. This distribution is similar
to the experimentally measured distribution of the Hall current
density [5,6]. The peak of the current density is located several
millimeters upstream of the exit plane, with some portion of the
current flowing outside the acceleration channel. The simulated
magnetic field values of the magnetic sensors located outside the
acceleration channel are in the range of 1–10 mG. The maximum
self-magnetic field values in the acceleration channel were in the
range of several Gauss, which is the same order of magnitude as the
results of Haas and Gallimore [5,6].

A. Regularization

The various steps of the numerical solution process are now
presented. Solving theminimization problemwithout the constraints

and regularization term gives the results shown in Fig. 8. Obviously,
the solution is far from the exact distribution, and it has no physical
sense because the current density in some locations is negative (i.e.,
the currents in different elements flow in different azimuthal
directions). Adding the nonnegativity constraint, we obtain the
solution shown in Fig. 9. This solution is also very far from the
current distribution shown in Fig. 7. Adding the regularization term
described previously to obtain the smooth distribution will give the
result presented in Fig. 10. This result is still far from the original
distribution. However, now this distribution is continuous and
smooth. This is the result of the regularization term addition. Adding
the zero constraint at the borders of the solution domain, we obtain
the solution shown in Fig. 11. This solution is sufficiently close to the
exact current distribution. The position of its peak coincides with the
corresponding position of the exact distribution; radial and axial
widths of distribution are very close to those of the original
distribution. The total current corresponding to this distribution is
10:4A, which is close to the original value of 10A.

The radially averaged axial profiles, as well as the axially averaged
radial profiles corresponding to the original distribution and to the
distribution calculated from simulatedmeasurements, are presented in
Fig. 12. It should be emphasized that our objective is to obtain asmuch
information as possible about the Hall current distribution, but it is
impossible to obtain the exact distribution from the regularized
solution.Besides, accuracy is limitedbecauseonly a limitednumberof
sensors placed in specific locations can be used. In Fig. 12, it is clearly
seen that the obtained solution is sufficiently close to the exact one.

B. Choice of Regularization Parameter

An important stage of the solution is the choice of the regularization
parameter. This parameter accounts for the degree of smoothness of
the regularized solution. The most commonly used method for the
regularization parameter choice is the L-curve method [18]. The L
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curve is the parametric plot of the discrete smoothing norm, that is, the
norm of the regularization term kLjHk2 versus the corresponding
residual norm kA � jH � Bmk2. For many discrete ill-posed
problems, this curve plotted in log–log scale has a characteristic L
shapewith a distinct corner separating its horizontal andvertical parts.
According to the L-curve criterion, the value of the regularization
parameter corresponding to theL-curve corner is the optimal value. In
our case, the curve does not have the L shape, and the optimal value of
the regularization parameter does not correspond to its distinct corner.
The reason is that in this case the residual norm and the smoothing
norm are not monotonic functions of the regularization parameter.
Another popular method for choosing the regularization parameter is
the discrepancy principle. It requires the knowledge or a good
estimate of the error norm. It is not possible to use it because the error
norm is not known. The generalized cross validation (GCV) method
also cannot be used in this case.

When it is not possible to use the parameter-choice methods, the
regularization parameter may be also chosen by visual inspection of
the solution [19,20]. Because the parameter varies in the range

10�3–100, which is not very wide, this procedure is not very time
consuming.

The parameter-choice procedure is demonstrated in Fig. 13. The
set of solutions is obtained for different regularization parameter
values, and the minimal value corresponding to a relatively smooth
solution with a single peak is chosen. In the solution presented here,
10 parameter values in the range 10�3–100, uniformly spaced on the
logarithmic scale, were used. Several solutions are presented in
Fig. 13. Corresponding regularization parameter values and total
current values are presented in the plots.

The solutions with a low regularization parameter value are not
smooth; they have several sharp peaks and obviously may not be
chosen. As the regularization parameter value increases, the
solutions become smoother, and the last two solutions are
sufficiently smooth and have one distinct peak. The solution
corresponding to the regularization parameter value 0.0215 is finally
chosen in this case. The comparison of the solution with the original
distribution was presented in Fig. 12.

C. Choice of Optimal Number of Sensors

To determine the optimal number of magnetic sensors, at first the
maximum sensors number was assessed (i.e., all possible probe
placements were determined). The initial assessment showed that the
sensors may be placed in two regions inside thruster: in the box fitted
to themagnetic screen thatwasmentioned previously and close to the
thruster backplane, where the ratio of the Hall current self-field and
primary magnetic field is also sufficiently high. Ten possible sensor
locations were chosen as follows: six behind the anode, equally
spaced in the radial direction, and four in the modified part of the
outer magnetic screen. In every one of these points, both axial and
radialmagneticfield components can bemeasured, giving the overall
number of 20 sensors.

Then the analysis was performed to choose the optimal number of
magnetic sensors. As described previously, each sensor corresponds
to the row of the matrix A of Eq. (2), which was also described on
Fig. 2. Therefore, the choice of the optimal set of sensors corresponds
to the choice of the optimal set of the rows of matrixA from the given
20 rows. The followingmethodwas used: for thematrixwithN rows,
we may form N matrices with N � 1 rows, excluding consecutive
rownumbers 1; 2; . . . ; N from the initialmatrix. From thesematrices,
the one with the lowest condition number is chosen (the condition
number of a matrix measures the sensitivity of the solution of a
system of linear equations to errors in the data). Applying this
method for N (corresponding to the number of sensors),
consecutively changing from 20 to 3, we obtain 18 matrices
corresponding to 18 sets with different numbers of sensors.

The inverse solutions corresponding to different sets of sensors are
shown in Fig. 14. The arrow indicates the inverse solution variation
with the decrease of the number of sensors. As expected, the solution
accuracy deteriorates as the number of sensors decreases.

To study the tradeoff between the solution accuracy and the
number of sensors, two figures of merit were used. The first is the
relative error:
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Fig. 9 Solution of the inverse problem with nonnegativity constraint.
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Fig. 10 Solution of the inverse problem with a regularization term.
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Fig. 11 The regularized solution with unperturbed measurements.
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D�
X
i;j

kjinverseij � jexactij k2
kjexactij k2

(7)

The second is the thrust calculated using the following equation:

T �
Z
V

jjHBrj dV �
X
ij

jijBijr�V (8)

where Br, Bij is the radial component of the primary magnetic field
generated by the thruster’s magnetic system, calculated using FEM.

The results presented here were obtained using the noise-free
values of the simulated magnetic field measurements. Real
measurements are always contaminated with noise. To choose the
optimal number of sensors, it is also necessary to examine the inverse
problem solutions with simulated noise added to the magnetic field
values.

It is also necessary to determine the dependences of the solution
accuracy on the noise level to estimate the accuracy of the Hall
current determined from the experimental data. The measurement
error can be estimated by statistical techniques, and using the results
presented here, we can estimate the accuracy of the inverse problem
solution. These data are also required to determine the limitation on
the level of current oscillations in magnetic coils. These oscillations
should be limited to increase the measurements’ accuracy.

Noise was added to the simulated measurements using the
following expression:

B�i � Bi�1	 d�� (9)

where Bi and B
�
i are exact and “measured”magnetic field values for

the ith sensor, and � is a normally distributed random number with
mean 0 and standard deviation 1. The noise leveld varied in the range
of 0.025–0.1, corresponding to the error’s standard deviation in the
range of 2.5–10%.
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Fig. 13 Solutions corresponding to different values of the regularization parameter.

124 RUBIN, KAPULKIN, AND GUELMAN



For every sensors set and noise level, 400 simulated
measurements, corresponding to the same exact magnetic field
values, were generated. The inverse problem was solved using that
value; relative error and thrust values corresponding to a particular
noise level and sensors set were averaged. The dependences of these
values on the number of sensors for different noise levels (including
0% level, no noise) are presented in Fig. 15. Thrust values were
normalized to the exact value.

Without noise, the relative solution error is almost constant for 13
or more sensors, jumps when the number drops below 13, and grows
when the number reduces below 8. Thrust is very close to the exact
value for 13 and more sensors and varies significantly for seven
sensors and less. Up to this point, it seems reasonable to choose the
set of 13 sensors. However, the situation is different when noise is
added. As seen from Fig. 15, for a large sensor number, the average
solution error and the average error in calculated thrust grow stronger
with measurement noise growth. It happens because the matrices
corresponding to the large number of sensors are highly ill
conditioned and therefore very sensitive to noise. When the noise
level is 10%, the average error is less for 10 sensors than for 20.

We see that it can be unreasonable to choose too large a sensor set
because increasing the number of sensors to more than 13 gives little
or no improvement in the case of exact measurements and may
deteriorate the accuracy if large errors are present, but it also should
not be too small. From Fig. 15, one can see that the sensor sets
including fewer than eight sensors do not contain the information
necessary for a reasonably accurate solution leading to high errors.
At least one sensor placed in themodified part of themagnetic screen
is necessary, which is not the case for sets with seven and fewer
sensors. Therefore, we choose the set including 10 sensors. This set
includes one sensor placed in the modified part of the magnetic
screen and nine sensors near the thruster backplane. The solution
corresponding to noise-free measurement obtained using this set is
presented in Fig. 12.

D. Numerical Example Based on Published Experimental Data

To evaluate how the proposed method will perform for other Hall
thruster models, the data of Haas and Gallimore [5,6] on azimuthal
current distribution in a Hall thruster were used. In this numerical
example, the computations for the P5 Hall thruster were performed

using the Hall current distributions published in [5,6]. The magnetic
system dimensions of the P5 thruster were taken from [21]. Primary
magnetic field distributions for the P5 thruster were taken from [7],
because only inner wall, centerline, and outer wall distributions were
given; tensor spline was used to obtain the distribution in the entire
acceleration channel. In the simulations, it is assumed that the
magnetic sensors are placed into the P5 thruster. The locations of the
sensors are analogous to the locations determined here: one sensor in
the region close to the exit plane and nine sensors near the thruster
backplane. The algorithm of the direct problem solution described in
Sec. II.A is used to calculate the kernel matrix for this thruster.
Because the magnetic screens of the P5 thruster are axially
symmetric, the 2-D axisymmetric calculations of magnetic field
using the finite element method magnetics solver were performed.

To simulate the magnetic field measurements for sensors located
outside the acceleration chamber, the Hall current distributions were
approximated by fitting Eq. (1) to experimental data from [5,6].
Then, using the kernel matrix, simulated magnetic field measure-
ments were calculated, and the inverse problem was solved.

The comparison of the Hall current distributions approximated to
experimental data from [5,6], and the solutions of the inverse
problem are presented in Figs. 16 and 17.

Thrust values were calculated for the approximated distributions
and the inverse problem solutions using Eq. (8). For the 1.6 kW
mode, the thrust value corresponding to the approximated
distribution is 103.1 mN, and the value corresponding to the inverse
problem solution is 101.1 mN. The value calculated from the
experimental data [5,6] is 93 mN, and the directly measured value is
95 mN. For the 3 kW mode, thrust values corresponding to the
approximated distribution and to the inverse problem solution are
181.9 and 179.3 mN, respectively; calculated and measured values
from 5 and 6 are �168 and 175 mN. The discrepancy between the
thrust values in [5,6] and the thrust calculated using the approximated
distribution is due to inaccuracy in the approximation of the current
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Fig. 14 Inverse problem solutions for different number of sensors.
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Fig. 16 Hall current distribution. 1.6 kW mode. Left) experimental data fit; right) inverse problem solution.
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distribution and interpolation of the primary magnetic field.
Nevertheless, this discrepancy makes less than 10% of the exact
value, and this example demonstrated that the proposed technique
can be used for thrust estimation after adequate calibration.

V. Conclusions

1) A new method for determination of the Hall current structure
inside theHall thruster acceleration channel is developed. It is shown
that the Hall current structure can be determined using noncontact
steady-state measurements of the magnetic field. The method is
based on two-dimensional constrained regularization.

2) The solution algorithm was tested using both noiseless and
noisy simulated magnetic measurements. The tradeoff between the
sensors number and solution accuracy was studied and the optimal
number and positions of sensors were determined.

3) The method was tested using published data on Hall current
distributions measured in experiments with the P5 Hall thruster.

4) The implementation of the proposed method requires minor
modification of the thruster. The hardware necessary to carry out the
measurements is quite simple. The proposed method is to be
validated in experiments.
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Fig. 17 Hall current distribution, 3 kW mode. Left) fitted to experimental data; right) inverse problem solution.
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